Activity in Brain Networks Related to Features of Depression

Reports new study in Biological Psychiatry

Philadelphia, PA, April 3, 2012 – Depressed individuals with a tendency to ruminate on negative thoughts, i.e., to repeatedly think about particular negative thoughts or memories, show different patterns of brain network activation compared to healthy individuals, report scientists of a new study in Biological Psychiatry.

The risk for depression is increased in individuals with a tendency towards negative ruminations, but patterns of autobiographic memory also may be predictive of depression.

When asked to recall specific events, some individuals have a tendency to recall broader categories of events instead of specific events. This is termed overgeneral memory and, like those who tend to ruminate, these individuals also have a higher risk of developing depression.

These self-referential activities engage a network of brain regions called the default mode network, or DMN. Prior studies using imaging techniques have already shown that the DMN activates abnormally in individuals with depression, but the relationship between DMN activity and depressive ruminations was not clear.

In this new report, Dr. Shuqiao Yao and colleagues evaluated DMN functional connectivity in untreated young adults experiencing their first episode of major depression and healthy volunteers. Each participant underwent a brain scan and completed tests to measure their levels of rumination and overgeneral memory.

As expected, the depressed patients exhibited higher levels of rumination and overgeneral memory than did the control subjects. They also observed increased functional connectivity in the anterior medial cortex regions and decreased functional connectivity in the posterior medial cortex regions in depressed patients compared with control subjects.

Among the depressed subjects, an interesting pattern of dissociation emerged. The increased connectivity in anterior regions was positively associated with rumination, while the decreased connectivity in posterior regions was negatively associated with overgeneral memory.

Dr. Yao, of Central South University in Hunan, China, commented on the importance of these findings: “In the future, resting-state network activity in the brain will provide useful models for investigating network features of cognitive dysfunction in psychopathology.”

“As we dig deeper in brain imaging studies, we are becoming increasingly interested in the activity of brain circuits rather than single brain regions,” said Dr. John Krystal, Editor of Biological Psychiatry. “Although it is a more complicated process, studying brain circuits may provide greater insight into symptoms, such as depressive ruminations. The current study nicely illustrates how altered activity at different sites within a brain network may be related to different features of depression.”

#
Notes for editors
Full text of the article is available to credentialed journalists upon request; contact Rhiannon Bugno at +1 214 648 0880 or Biol.Psych@utsouthwestern.edu. Journalists wishing to interview the authors may contact Shuqiao Yao at 86 731 85292130 or shuqiaoyao@163.com.

The authors’ affiliations, and disclosures of financial and conflicts of interests are available in the article.

John H. Krystal, M.D., is Chairman of the Department of Psychiatry at the Yale University School of Medicine and a research psychiatrist at the VA Connecticut Healthcare System. His disclosures of financial and conflicts of interests are available here.

About Biological Psychiatry
Biological Psychiatry is the official journal of the Society of Biological Psychiatry, whose purpose is to promote excellence in scientific research and education in fields that investigate the nature, causes, mechanisms and treatments of disorders of thought, emotion, or behavior. In accord with this mission, this peer-reviewed, rapid-publication, international journal publishes both basic and clinical contributions from all disciplines and research areas relevant to the pathophysiology and treatment of major psychiatric disorders.

The journal publishes novel results of original research which represent an important new lead or significant impact on the field, particularly those addressing genetic and environmental risk factors, neural circuitry and neurochemistry, and important new therapeutic approaches. Reviews and commentaries that focus on topics of current research and interest are also encouraged.

Biological Psychiatry is one of the most selective and highly cited journals in the field of psychiatric neuroscience. It is ranked 4th out of 126 Psychiatry titles and 15th out of 237 Neurosciences titles in the Journal Citations Reports® published by Thomson Reuters. The 2010 Impact Factor score for Biological Psychiatry is 8.674.

About Elsevier
Elsevier is a world-leading provider of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including The Lancet and Cell, and close to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier’s online solutions include SciVerse ScienceDirect, SciVerse Scopus, Reaxys, MD Consult and Nursing Consult, which enhance the productivity of science and health professionals, and the SciVal suite and MEDai’s Pinpoint Review, which help research and health care institutions deliver better outcomes more cost-effectively.

A global business headquartered in Amsterdam, Elsevier employs 7,000 people worldwide. The company is part of Reed Elsevier Group PLC, a world-leading publisher and information provider, which is jointly owned by Reed Elsevier PLC and Reed Elsevier NV. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).