The Music of the (Hemi)spheres Sheds New Light on Schizophrenia

A new study in Biological Psychiatry

Philadelphia, PA, May 9, 2012 – In 1619, the pioneering astronomer Johannes Kepler published Harmonices Mundi in which he analyzed data on the movement of planets and asserted that the laws of nature governing the movements of planets show features of harmonic relationships in music. In so doing, Kepler provided important support for the, then controversial, model of the universe proposed by Copernicus.

In the latest issue of Biological Psychiatry, researchers at the University of California in San Diego suggest that careful analyses of the electrical signals of brain activity, measured using electroencephalography (EEG), may reveal important harmonic relationships in the electrical activity of brain circuits.

The underlying premise is a simple one - that brain function is expressed by circuits that fire, and therefore generate oscillating EEG signals, at different frequencies.

High frequency EEG activity called gamma, for example, might reflect the activity of fast-spiking cells which are often a subclass of inhibitory nerve cells containing parvalbumin. Represented musically, this would be a high pitch, i.e., toward the right side of the piano.

Lower frequency EEG activity, called theta, might come from cells that fire with a lower frequency.

As circuits interact with each other, one would see different “musical combinations”, like the chords of music, emerging in the EEG signal. Abnormalities in the structure and function of brain circuits would be reflected in cacophonous music, chords where the musical “voices” are firing at the wrong rate (pitch), volume (amplitude), or timing.

It is increasingly evident that schizophrenia is a disorder characterized by disturbances in the “music of the brain hemispheres.” This new report describes relationships between low- and high-frequency EEG oscillations in the human brain produced when high frequency auditory stimuli are presented to a research subject. The authors observed relatively slower oscillations and reduced cross-phase synchrony (for example, peak of theta coinciding with peak of gamma) in schizophrenia patients compared to healthy study participants.

Dr. John Krystal, Editor of Biological Psychiatry, commented, “The new findings highlight the importance of understanding the relationships between different circuits. It seems that cortical abnormalities in schizophrenia disturb brain function, in part, by disturbing the ‘tuning’ of brain circuits in relation to each other.”

#

Notes for editors
Full text of the article is available to credentialed journalists upon request; contact Rhiannon Bugno at +1 214 648 0880 or Biol.Psych@utsouthwestern.edu. Journalists wishing to interview the authors may contact Dr. Gregory Light at +1 619 543 2496 or glight@ucsd.edu.
The authors’ affiliations, and disclosures of financial and conflicts of interests are available in the article.

John H. Krystal, M.D., is Chairman of the Department of Psychiatry at the Yale University School of Medicine and a research psychiatrist at the VA Connecticut Healthcare System. His disclosures of financial and conflicts of interests are available here.

About Biological Psychiatry

Biological Psychiatry is the official journal of the *Society of Biological Psychiatry*, whose purpose is to promote excellence in scientific research and education in fields that investigate the nature, causes, mechanisms and treatments of disorders of thought, emotion, or behavior. In accord with this mission, this peer-reviewed, rapid-publication, international journal publishes both basic and clinical contributions from all disciplines and research areas relevant to the pathophysiology and treatment of major psychiatric disorders.

The journal publishes novel results of original research which represent an important new lead or significant impact on the field, particularly those addressing genetic and environmental risk factors, neural circuitry and neurochemistry, and important new therapeutic approaches. Reviews and commentaries that focus on topics of current research and interest are also encouraged.

Biological Psychiatry is one of the most selective and highly cited journals in the field of psychiatric neuroscience. It is ranked 4th out of 126 Psychiatry titles and 15th out of 237 Neurosciences titles in the Journal Citations Reports® published by Thomson Reuters. The 2010 Impact Factor score for *Biological Psychiatry* is 8.674.

About Elsevier

Elsevier is a world-leading provider of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including *The Lancet* and *Cell*, and close to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier’s online solutions include *SciVerse ScienceDirect*, *SciVerse Scopus*, *Reaxys*, *MD Consult* and *Nursing Consult*, which enhance the productivity of science and health professionals, and the *SciVal* suite and *MEDai’s Pinpoint Review*, which help research and health care institutions deliver better outcomes more cost-effectively.

A global business headquarteried in Amsterdam, Elsevier employs 7,000 people worldwide. The company is part of *Reed Elsevier Group PLC*, a world-leading publisher and information provider, which is jointly owned by Reed Elsevier PLC and Reed Elsevier NV. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).