Psychiatric Medication Effects on Brain Structure

Biological Psychiatry article provides insights from animal studies

Philadelphia, PA, May 8, 2012 – It is increasingly recognized that chronic psychotropic drug treatment may lead to structural remodeling of the brain. Indeed, clinical studies in humans present an intriguing picture: antipsychotics, used for the treatment of schizophrenia and psychosis, may contribute to cortical gray matter loss in patients, whereas lithium, used for the treatment of bipolar disorder and mania, may preserve gray matter in patients.

However, the clinical significance of these structural changes is not yet clear. There are many challenges in executing longitudinal, controlled, and randomized studies to evaluate this issue in humans, particularly because there are also many confounding factors, including illness severity, illness duration, and other medications, when studying patients.

It is therefore critical to develop animal models to inform the clinical research. To accomplish this, researchers at King's College London, led by Dr. Shitij Kapur, developed a rat model using clinically relevant drug exposure and matched clinical dosing in combination with longitudinal magnetic resonance imaging. They administered either lithium or haloperidol (a common antipsychotic) to rats in doses equivalent to those received by humans. The rats received this treatment daily for eight weeks, equivalent to 5 human years, and underwent brain scans both before and after treatment.

Dr. Kapur explained their findings, “Using this approach, we observed that chronic treatment with haloperidol leads to decreases in cortical gray matter, whilst lithium induced an increase, effects that were reversible after drug withdrawal.” Gray matter was decreased by 6% after haloperidol treatment, but increased by 3% after lithium treatment.

“These important observations clarify conflicting findings from clinical trials by removing many of the confounding effects,” commented Dr. John Krystal, Editor of _Biological Psychiatry_. “Whether these changes in brain structure underlie the benefits or side effects of these medications remain to be seen. However, they point to brain effects of established medications that are not well understood, but which may hold clues to new treatment approaches.”

“Whilst these intriguing findings are consistent with available clinical data, it should be noted these studies were done in normal rats, which do not capture the innate pathology of either schizophrenia or bipolar disorder,” Kapur added. “Moreover, because the mechanism(s) of these drug effects remain unknown, further studies are required, and one should be cautious in drawing clinical inferences. Nevertheless, our study demonstrates a new and powerful model system for further investigation of the effects of psychotropic drug treatment on brain morphology.”

Notes for editors
Full text of the article is available to credentialed journalists upon request; contact Rhiannon Bugno at +1 214 648 0880 or Biol.Psych@utsouthwestern.edu. Journalists wishing to interview the authors may contact Dr. Shitij Kapur at +44 (0) 20 7848 0424 or shitij.kapur@kcl.ac.uk.
The authors’ affiliations, and disclosures of financial and conflicts of interests are available in the article.

John H. Krystal, M.D., is Chairman of the Department of Psychiatry at the Yale University School of Medicine and a research psychiatrist at the VA Connecticut Healthcare System. His disclosures of financial and conflicts of interests are available [here](#).

About Biological Psychiatry

Biological Psychiatry is the official journal of the *Society of Biological Psychiatry*, whose purpose is to promote excellence in scientific research and education in fields that investigate the nature, causes, mechanisms and treatments of disorders of thought, emotion, or behavior. In accord with this mission, this peer-reviewed, rapid-publication, international journal publishes both basic and clinical contributions from all disciplines and research areas relevant to the pathophysiology and treatment of major psychiatric disorders.

The journal publishes novel results of original research which represent an important new lead or significant impact on the field, particularly those addressing genetic and environmental risk factors, neural circuitry and neurochemistry, and important new therapeutic approaches. Reviews and commentaries that focus on topics of current research and interest are also encouraged.

Biological Psychiatry is one of the most selective and highly cited journals in the field of psychiatric neuroscience. It is ranked 4th out of 126 Psychiatry titles and 15th out of 237 Neurosciences titles in the *Journal Citations Reports*® published by Thomson Reuters. The 2010 Impact Factor score for *Biological Psychiatry* is 8.674.

About Elsevier

Elsevier is a world-leading provider of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including *The Lancet* and *Cell*, and close to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier’s online solutions include SciVerse ScienceDirect, SciVerse Scopus, Reaxys, MD Consult and Nursing Consult, which enhance the productivity of science and health professionals, and the SciVal suite and MEDai’s Pinpoint Review, which help research and health care institutions deliver better outcomes more cost-effectively.

A global business headquartered in Amsterdam, Elsevier employs 7,000 people worldwide. The company is part of Reed Elsevier Group PLC, a world-leading publisher and information provider, which is jointly owned by Reed Elsevier PLC and Reed Elsevier NV. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).